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Amplitude death induced by dynamic coupling
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The present paper shows that dynamic coupling induces amplitude death in coupled identical oscillators. For
a simple limit-cycle oscillator, our theoretical analysis provides the necessary and sufficient condition for
amplitude death. Furthermore, we guarantee that amplitude death never occurs, if each oscillator satisfies the
odd number property that is known in the field of delayed-feedback control of chaos.
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There have been various investigations on amplitu
death in coupled oscillators@1–3#; this phenomenon is a
coupling-induced stabilization of the origin in the oscillato
For two coupled oscillators, Aronson, Ermentrout, and K
pell have investigated this phenomenon in detail@4#. From
these results, we can see that amplitude death never occu
coupled identical oscillators.

Reddy, Sen, and Johnston reported that a time-delay
pling, which is frequently observed in laser and biologic
systems, induces an amplitude death in coupled identica
cillators @5#. Their result has created considerable interes
recent years@6,7#. The theoretical analysis on time-dela
induced amplitude death has been shown in Ref.@8#; further-
more, this phenomenon was experimentally observed in e
tronic circuits@9#, living oscillators@10#, and thermo-optical
oscillators@11#. In addition, the time-delay-induced stabiliz
tion of coupled identical discrete-time systems has been
vestigated@12#.

Kuntsevich and Pisarchik showed amplitude death i
dual-wavelength class-B laser with modulated losses@13#.
This laser is a nonautonomous system, since the losses
channel are modulated by an external sinusoidal force
studies on amplitude death of autonomous systems@1–4#,
the coupling signal is proportional to the difference betwe
the oscillators’ states. The proportionality factor is a const
value; hence, it can be considered asstaticcoupling. In other
words, static coupling without delay does not induce am
tude death in coupled identical oscillators.

The present paper proposes adynamiccoupling that has
not only the proportionality factor but also its own dynamic
however, the dynamic-coupled systems are classified into
autonomous systems. The motivations of our proposal ar
follows: it is a rough approximation of the time-delayed co
pling for low-frequency oscillators and/or short-time del
@14#; RC-ladder coupling@15#, which is an approximation o
RC wire delay connections in VLSI chips@16#, can be con-
sidered as a kind of the dynamic coupling. From these m
tivations, the dynamic coupling is reasonable from a pra
cal viewpoint. We shall show the dynamic-coupling-induc
amplitude death, and provide the stability analysis.

Let us consider two identical limit-cycle oscillators,

F ẋa1

ẋa2
G5Fxa1~12xa1

2 2xa2
2 !2vxa2

xa2~12xa1
2 2xa2

2 !1vxa1
G1Fua

0 G , ~1!
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F ẋb1

ẋb2
G5Fxb1~12xb1

2 2xb2
2 !2vxb2

xb2~12xb1
2 2xb2

2 !1vxb1
G1Fub

0 G , ~2!

where xa i ,b iPR( i 51,2) andua,bPR are the system vari-
ables and the coupling signals, respectively. The param
v.0 is the natural frequency. It is well accepted that t
oscillator without coupling~i.e., ub[ua[0) has been con-
sidered as a typical model of limit cycle. This is because
oscillator shows a stable limit cycle with unit amplitud
Several investigations of the static-coupled oscillators h
been reported in Refs.@3–5,8#. The main purpose of this
paper is to propose the following dynamic coupling:

ża52za1xb1 , ua5k~za2xa1!, ~3!

żb52zb1xa1 , ub5k~zb2xb1!, ~4!

where za,bPR are the additional variables in the dynam
coupling. kPR corresponds to the coupling strength.
should be noted that Eqs.~3! and~4! include the other oscil-
lator variablesxb1 andxa1, respectively. The steady states
subsystems~1! and ~2! without coupling (k50) are

@xa1 xa2#T5@0 0#T, @xb1 xb2#T5@0 0#T,

which never change even by dynamic coupling; hence, c
pling influences only the state stability.

The parameter and the coupling strength are set av
510 andk54.0. Figure 1 shows the numerical simulation
the coupled limit-cycle oscillators. Each oscillator witho
coupling (k50) behaves periodically untilt5150; then, the
dynamic coupling is achieved att5150. It can be seen tha
the oscillations vanish after the coupling. This phenomen
is the amplitude death induced by dynamic coupling. T
bifurcation diagram (v54) is shown in Fig. 2, where the
coupling strengthk is used as a bifurcation parameter. W
can observe amplitude death in the wide range ofk. The
variablexa1 presents oscillatory behavior inkP@0,2.3#; the
amplitude death occurs inkP@2.3,8.5#, where all variables
converge on the origin. The stable fixed point, which diffe
from the origin, appears fork>8.5. Now, an important ques
©2003 The American Physical Society02-1
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tion remains about the analytical derivation of the coupl
strength range. This paper shall answer it on the basi
linear stability analysis.

We consider two identicalm-dimensional subsystem
Sa,b ,

Sa :H ẋa5F~xa!1Bua

ya5Cxa ,
Sb :H ẋb5F~xb!1Bub

yb5Cxb ,

where xa,bPRm are the system variables,ua,bPRl and
ya,bPRp are the input and output signals.F:Rm→Rm de-
notes the nonlinear function that has an unstable steady
0 @i.e., F(0)50]. BPRm3 l and CPRq3m are the input and
output matrices. These subsystemsSa,b are coupled by

Pa :H ża52za1yb

ua5K~za2ya!,
Pb :H żb52zb1ya

ub5K~zb2yb!,

whereza,bPRp are the additional variables for dynamic co
pling. KPRl 3p implies the coupling strength. Figure 3 illus
trates the structure of the coupled systems. The steady
of the coupled systems is described by

@xa za xb zb#T5@0 0 0 0#T. ~5!

The amplitude death induced by dynamic coupling can
considered as a stabilization of steady state~5!.

In order to analyze local stability of Eq.~5!, we linearize
subsystemsSa,b around the steady state; the linearized s
systems are as follows:

DSa :H ẋa5Axa1Bua

ya5Cxa ,
DSb :H ẋb5Axb1Bub

yb5Cxb ,

FIG. 1. Behavior of the coupled limit-cycle oscillators just b
fore and after the dynamic coupling (v510,k54.0). Two isolated
oscillators are coupled att5150.

FIG. 2. Bifurcation diagram of the coupled limit-cycle oscilla
tors for kP@0,12# (v54.0).
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where

Aª
]F~x!

]x U
x50

. ~6!

These subsystems are coupled byPa,b . A is a Jacobi matrix
of the nonlinear function at the steady state0, and has at
least one eigenvalue in the open right half complex pla
~i.e., A is an unstable matrix!.

The local stability of steady state~5! in the coupled sys-
tem is the same as the stability of linear subsystemsDSa,b
coupled byPa,b . The coupled linear systems can be giv
by

F ẋa

ża

ẋb

żb

G5F A2BKC BK 0 0

0 2I p C 0

0 0 A2BKC BK

C 0 0 2I p

GF xa

za

xb

zb

G ,

~7!

where I p is the p-dimensional identity matrix. The stability
of linear system~7! depends only on the characteristic fun
tion f (l)5 f 1(l) f 2(l), where

f 1~l!ªdetFlIm2A1BKC 2BK

2C ~l11!I p
G ,

f 2~l!ªdetFlIm2A1BKC 2BK

C ~l11!I p
G .

Linear system~7! is stable if and only if all rootsl i@ i
51,2, . . . ,2(m1p)# of f (l)50 are in the open left half
complex plane. These roots can be obtained by solv
f 1(l)50 and f 2(l)50.

If lim l→` f 1(l)5` and f 1(0),0 are satisfied, at leas
one root off 1(l)50 is in the open right half complex plane
It is obvious that the first condition liml→` f 1(l)5` always
holds, and the second condition can be described by

f 1~0!5det@2A#5 (
q51

m

~2sq!,

wheresq(q51,2, . . . ,m) are the eigenvalues ofA. Hence,
if A has an odd number of real positive eigenvalues~odd
number property!, then we havef 1(0),0. These arguments
can be summarized as follows: If the Jacobi matrixA of

FIG. 3. Dynamic-coupled nonlinear systems.Sa,b , subsystems
andPa,b , dynamic coupling.
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oscillators satisfies the odd number property, the dyna
coupling never induces amplitude death at the origin
coupled identical systems. The odd number property
been known in the field of delayed-feedback control of ch
@17#. A similar stability analysis can be found in Refs.@18–
20#.

We shall provide two numerical examples to confirm o
theoretical results. First, let us look again at limit-cycle o
cillators ~1! and ~2! coupled by dynamic coupling~3! and
~4!. The above linear stability analysis can be applied
these coupled oscillators. The Jacobi matrix described
Eq. ~6!,

A5F 1 2v

v 1 G ,
has the eigenvaluess1,2516 iv; hence,A is an unstable
matrix, and does not satisfy the odd number property. T
other parameters are

B5@1 0#T, C5@1 0#, K5k.

From linear stability analysis, we have

f 1~l!5l31~k21!l21~k211v2!l111v222k,

f 2~l!5l31~k21!l21~v2212k!l111v2.

The steady state of the coupled oscillators are locally sta
if and only if all the roots of the characteristic equation
f 1(l)50 and f 2(l)50, are in the open left half comple
plane. These roots are not so simple; therefore, we apply
Routh stability criterion to the characteristic equations. T
criterion has been used to check the stability of character
equations in the field of control theory@14#. These character
istic equations are stable if and only ifk and v satisfy the
following inequalities: ~a! 11v222k.0, ~b! 12v22k
,0, ~c! 12v21k,0, ~d! k.1, ~e! k21v2k22v2.0,
and ~f! k22v2k12v2,0. From these inequalities, we ob
tain the amplitude death region shown in Fig. 4. The c
pling strength range can be described as

1
2 ~v22vAv228!,k, 1

2 ~v21vAv228!

for 2A2,v<A41A17, and

1
2 ~v22vAv228!,k, 1

2 ~11v2!

for A41A17<v. This theoretical result allows us to obta
the coupling strength range 2.343,k,8.500 for v54. It
must be noted that the range agrees well with the nume
result shown in Fig. 2.

Second, we consider the two identical Ro¨ssler systems,

j̇a152ja22ja3 , j̇b152jb22jb3 ,

j̇a25ja11g1ja21ua , j̇b25jb11g1jb21ub ,

j̇a35g21ja3~ja12g3!, j̇b35g21jb3~jb12g3!,
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ẇa52wa1jb2 , ua5k~wa2ja2!,

ẇb52wb1ja2 , ub5k~wb2jb2!.

ja i ,b iPR( i 51,2,3) are the system variables andg1,2,3PR
are the parameters. Each isolated subsystem has the s
state

ja,bª@ja1,b1 ja2,b2 ja3,b3#T5@j f 1 j f 2 j f 3#T, ~8!

where

j f 15
g32Ag3

224g1g2

2
, j f 25

2g31Ag3
224g1g2

2g1
,

j f 35
g32Ag3

224g1g2

2g1
.

This steady state can be shifted to the origin via a chang
variables,

xa i ,b iªja i ,b i2j f i ~ i 51,2,3!, za,bªwa,b2j f 2 ,

then we obtain the subsystemsSa,b coupled byPa,b . Since
the nonlinear function is

F~x!5F 2~x21j f 2!2~x31j f 3!

x11j f 11g1~x21j f 2!

g21~x31j f 3!~x11j f 12g3!
G ,

we obtain the Jacobi matrix

A5F 0 21 21

1 g1 0

j f 3 0 j f 12g3

G .

The input and output matrices and the coupling gain
given by

B5@0 1 0#T, C5@0 1 0#, K5k.

The parameters are fixed at the well-known values:g1
50.398, g252.0, andg354.0, where each isolated sub
system (k50) behaves chaotically. The eigenvalues ofA are

FIG. 4. Amplitude death region for (v,k) space.
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s1523.655 ands2,350.1316 i0.981; hence, we notice tha
A is an unstable matrix and does not satisfy the odd num
property. From linear stability analysis, we notice that amp
tude death could occur at steady state. Figure 5 shows
behavior of the coupled systems just before and after
namic coupling (k53). They behave chaotically before th
coupling and converge on steady state~8! after that. Unlike
the limit-cycle oscillators, it is not so easy to derive the co
pling strength range in which amplitude death occurs. Ho
ever, a numerical analysis supports us in estimatingk as
shown in Fig. 6. The bifurcation diagram forkP@0,10# is
indicated in Fig. 6~a!. Figure 6~b! presents the maximum
real part of roots of f 1(l)50 and f 2(l)50
@i.e., lmaxªmaxiP[1,8]Re(l i)]. From our stability analysis
we know that steady state~8! is stable if and only if this
value is negative. It can be stated that amplitude death oc
in a coupling strength range where the maximum real par
the roots is negative. The above numerical estimation oflmax
is a simple calculation of eigenvalues of system matrix~7!;

FIG. 5. Behavior of the coupled Ro¨ssler systems just before an
after the dynamic coupling (k53.0). Two isolated systems ar
coupled att5150.
e
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e
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hence, the stability can be easily analyzed even for hi
dimensional oscillators. On the contrary, for the time-delay
coupled-induced amplitude death, a laborious task of gra
cal method, Nyquist plot@14#, is needed to determine th
stability.

In conclusion, this paper introduced the dynamic coupl
that induces amplitude death in coupled identical oscillato
We have analyzed the amplitude death, and obtained the
ficient condition under which it never occurs. Furthermo
we observed amplitude death in coupled limit-cycle oscil
tors and in coupled Ro¨ssler systems.
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FIG. 6. Bifurcation diagram of the coupled Ro¨ssler systems for
kP@0,10#.
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